| Remote Sensing | |
| Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) | |
| Andreas Heckel1  Peter North1  Linlu Mei2  Luca Lelli2  Marco Vountas2  Miriam Kosmale3  Lars Klüser3  Thomas Popp3  Simon Pinnock4  Lieven Clarisse5  Pekka Kolmonen6  Gerrit de Leeuw6  Larisa Sogacheva6  Yong Xue7  Alain Chedin8  Virginie Capelle8  Oleg Dubovik9  Pavel Litvinov9  Christoph Brühl1,10  Stefan Kinne1,11  Roy Grainger1,12  Adam Povey1,12  Kerstin Stebel1,13  Michael Schulz1,14  Jan Griesfeller1,14  Christine Bingen1,15  Sophie Vandenbussche1,15  Charles Robert1,15  Pepijn Veefkind1,16  Lieuwe Gijsbert Tilstra1,16  Deborah Stein Zweers1,16  Gareth Thomas1,17  | |
| [1] Department of Geography, Swansea University, SA2 8PP Swansea, UK;Department of Physics, Institute of Environmental Physics, University Bremen, 28359 Bremen, Germany;Deutsches Zentrum für Luft-und Raumfahrt e. V. (DLR), Deutsches Fernerkundungsdatenzentrum (DFD), 82234 Oberpfaffenhofen, Germany;European Space Agency (ESA), European Centre for Space Applications and Telecommunications (ECSAT), OX11 0FD Didcot, UK;Faculty of Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;Finnish Meteorological Institute (FMI), Climate Research Unit, 00101 Helsinki, Finland;Informatics Research Center, London Metropolitan University, N7 8DB London, UK;LMD Ecole Polytechnique, 75007 Paris, France;Laboratoire d’Optique Atmosphérique, CNRS, Universite Lille-1, 59655 Villeneuve d’Ascq, France;Max Planck Institute for Chemistry, 55128 Mainz, Germany;Max Planck Institute for Meteorology, 20146 Hamburg, Germany;National Centre for Earth Observation, University of Oxford, OX1 3PU Oxford, UK;Norwegian Institute for Air Research (NILU) Atmospheric and Climate Research, 2027 Kjeller, Norway;Norwegian Meteorological Institute, 0313 Oslo, Norway;Royal Belgian Institute for Space Aeronomy (BIRA-IASB), B-1180 Brussels, Belgium;Royal Netherlands Meteorological Institute (KNMI), 3730 AE De Bilt, The Netherlands;STFC Rutherford Appleton Laboratory, OX11 0QX Chilton, UK; | |
| 关键词: aerosols; AOD; dust; absorbing aerosol; stratospheric aerosol extinction; satellite climate data record; algorithm evolution and climate data record production; best practices; | |
| DOI : 10.3390/rs8050421 | |
| 来源: DOAJ | |
【 摘 要 】
Producing a global and comprehensive description of atmospheric aerosols requires integration of ground-based, airborne, satellite and model datasets. Due to its complexity, aerosol monitoring requires the use of several data records with complementary information content. This paper describes the lessons learned while developing and qualifying algorithms to generate aerosol Climate Data Records (CDR) within the European Space Agency (ESA) Aerosol_cci project. An iterative algorithm development and evaluation cycle involving core users is applied. It begins with the application-specific refinement of user requirements, leading to algorithm development, dataset processing and independent validation followed by user evaluation. This cycle is demonstrated for a CDR of total Aerosol Optical Depth (AOD) from two subsequent dual-view radiometers. Specific aspects of its applicability to other aerosol algorithms are illustrated with four complementary aerosol datasets. An important element in the development of aerosol CDRs is the inclusion of several algorithms evaluating the same data to benefit from various solutions to the ill-determined retrieval problem. The iterative approach has produced a 17-year AOD CDR, a 10-year stratospheric extinction profile CDR and a 35-year Absorbing Aerosol Index record. Further evolution cycles have been initiated for complementary datasets to provide insight into aerosol properties (i.e., dust aerosol, aerosol absorption).
【 授权许可】
Unknown