Nutrients | |
A Standardized Extract of Asparagus officinalis Stem (ETAS®) Ameliorates Cognitive Impairment, Inhibits Amyloid β Deposition via BACE-1 and Normalizes Circadian Rhythm Signaling via MT1 and MT2 | |
Yu-Hsuan Lin1  Tsai-Chen Wu1  Yin-Ching Chan1  Ci-Sian Wu1  Sue-Joan Chang2  | |
[1] Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan; | |
关键词: ETAS®; cognitive impairment; circadian rhythm signaling; senescence-accelerated mice; | |
DOI : 10.3390/nu11071631 | |
来源: DOAJ |
【 摘 要 】
The prevalence of cognitive impairments and circadian disturbances increases in the elderly and Alzheimer’s disease (AD) patients. This study investigated the effects of a standardized extract of Asparagus officinalis stem, ETAS® on cognitive impairments and circadian rhythm status in senescence-accelerated mice prone 8 (SAMP8). ETAS® consists of two major bioactive constituents: 5-hydroxymethyl-2-furfural (HMF), an abundant constituent, and (S)-asfural, a novel constituent, which is a derivative of HMF. Three-month-old SAMP8 male mice were divided into a control, 200 and 1000 mg/kg BW ETAS® groups, while senescence-accelerated resistant mice (SAMR1) were used as the normal control. After 12-week feeding, ETAS® significantly enhanced cognitive performance by an active avoidance test, inhibited the expressions of amyloid-beta precursor protein (APP) and BACE-1 and lowered the accumulation of amyloid β (Aβ) in the brain. ETAS® also significantly increased neuron number in the suprachiasmatic nucleus (SCN) and normalized the expressions of the melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). In conclusion, ETAS® enhances the cognitive ability, inhibits Aβ deposition and normalizes circadian rhythm signaling, suggesting it is beneficial for preventing cognitive impairments and circadian rhythm disturbances in aging.
【 授权许可】
Unknown