期刊论文详细信息
Symmetry
Bayesian Reference Analysis for the Generalized Normal Linear Regression Model
DiegoCarvalho Nascimento1  AmandaBuosi Gazon2  VeraLucia Damasceno Tomazella2  Francisco Louzada3  FranciscoAparecido Rodrigues3  PedroLuiz Ramos3  SandraRêgo Jesus4  Saralees Nadarajah5 
[1] Departamento de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile;Department of Statistics, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil;Institute of Mathematical Science and Computing, University of São Paulo, São Carlos 13566-590, Brazil;Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista, Bahia 45029-094, Brazil;School of Mathematics, University of Manchester, Manchester M13 9PR, UK;
关键词: Bayesian inference;    generalized normal linear regression model;    normal linear regression model;    reference prior;    Jeffreys prior;    Kullback–Leibler divergence;   
DOI  :  10.3390/sym13050856
来源: DOAJ
【 摘 要 】

This article proposes the use of the Bayesian reference analysis to estimate the parameters of the generalized normal linear regression model. It is shown that the reference prior led to a proper posterior distribution, while the Jeffreys prior returned an improper one. The inferential purposes were obtained via Markov Chain Monte Carlo (MCMC). Furthermore, diagnostic techniques based on the Kullback–Leibler divergence were used. The proposed method was illustrated using artificial data and real data on the height and diameter of Eucalyptus clones from Brazil.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次