期刊论文详细信息
Modern Stochastics: Theory and Applications
Fractional Cox–Ingersoll–Ross process with small Hurst indices
Yuliya Mishura1  Anton Yurchenko-Tytarenko1 
[1] Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska St., 64/13, Kyiv 01601, Ukraine;
关键词: Fractional Cox–Ingersoll–Ross process;    fractional Brownian motion;    Stochastic differential equation;    pathwise Stratonovich integral;   
DOI  :  10.15559/18-VMSTA126
来源: DOAJ
【 摘 要 】

In this paper the fractional Cox–Ingersoll–Ross process on ${\mathbb{R}_{+}}$ for $H<1/2$ is defined as a square of a pointwise limit of the processes ${Y_{\varepsilon }}$, satisfying the SDE of the form $d{Y_{\varepsilon }}(t)=(\frac{k}{{Y_{\varepsilon }}(t){1_{\{{Y_{\varepsilon }}(t)>0\}}}+\varepsilon }-a{Y_{\varepsilon }}(t))dt+\sigma d{B^{H}}(t)$, as $\varepsilon \downarrow 0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox–Ingersoll–Ross process are obtained.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次