期刊论文详细信息
Molecules
The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil
Ana G. Pérez1  Pilar Luaces1  Andrés Notario1  Rosario Sánchez1  Carlos Sanz1 
[1] Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Campus UPO, Ctra. Utrera km 1, Bldg. 46, 41013 Seville, Spain;
关键词: olive;    virgin olive oil;    volatile compounds;    phenolic compounds;    polyphenol oxidase;    lipoxygenase;   
DOI  :  10.3390/molecules27051650
来源: DOAJ
【 摘 要 】

Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次