| ChemEngineering | |
| Dry Reforming of Methane in a Pd-Ag Membrane Reactor: Thermodynamic and Experimental Analysis | |
| Adele Brunetti1  Monia Grandinetti1  Giuseppe Barbieri1  Alessio Caravella1  | |
| [1] Institute on Membrane Technology, National Research Council (ITM-CNR), Via P. Bucci, Cubo 17C, 87036 Rende (CS), Italy; | |
| 关键词: membrane engineering; hydrogen production; CO2 conversion; | |
| DOI : 10.3390/chemengineering2040048 | |
| 来源: DOAJ | |
【 摘 要 】
The present work is a study of CO2 Reforming of Methane (DRM) carried out in a catalytic Pd-based membrane reactor. A detailed thermodynamic analysis is carried out, calculating the chemical equilibrium parameters in two different cases: (a) DRM along with the Reverse Water Gas Shift (RWGS) reaction and (b) DRM along with both RWGS and the Boudouard Reaction (BR). The performance of membrane reactor is then experimentally analyzed in terms of methane conversion, hydrogen recovery and H2/CO reaction selectivity by varying feed pressure and CO2/CH4 feed molar ratio and 500 °C and GHSV = 100 h−1. Among the obtained results, a CH4 conversion of about 26% and a H2 recovery of 47% are achieved at low feed pressures, exceeding the traditional reactor equilibrium conversion. This effect can be attributed to the favorable thermodynamics coupled to the hydrogen permeation through the membrane. This study further demonstrates the general effectiveness of membrane-integrated reaction processes, which makes the production of syngas more efficient and performing, providing important environmental benefits.
【 授权许可】
Unknown