Plants | |
Juncus Bulbosus Tissue Nutrient Concentrations and Stoichiometry in Oligotrophic Ecosystems: Variability with Seasons, Growth Forms, Organs and Habitats | |
DagO. Hessen1  BenoîtO. L. Demars2  ThereseF. Moe2  | |
[1] Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway;Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway; | |
关键词: plant stoichiometry; carbon; nitrogen; phosphorus; river; lake; | |
DOI : 10.3390/plants10030441 | |
来源: DOAJ |
【 摘 要 】
Aquatic plant nutrient concentrations provide important information to characterise their role in nutrient retention and turnover in aquatic ecosystems. While large standing biomass of aquatic plants is typically found in nutrient-rich localities, it may also occur in oligotrophic ecosystems. Juncus bulbosus is able to form massive stands even in very nutrient-dilute waters. Here we show that this may be achieved by tissues with very high carbon-to-nutrient ratios combined with perennial (slow) growth and a poor food source for grazers inferred from plant stoichiometry and tissue nutrient thresholds. We also show that the C, N, P and C:N:P stoichiometric ratios of Juncus bulbosus vary with the time of year, habitats (lakes versus rivers) and organs (roots versus shoots). We found no differences between growth forms (notably in P, inferred as the most limiting nutrient) corresponding to small and large plant stands. The mass development of J. bulbosus requires C, N and P, whatever the ecosystem (lake or river), and not just CO2 and NH4, as suggested in previous studies. Since macrophytes inhabiting oligotrophic aquatic ecosystems are dominated by isoetids (perennial plants with a high root/shoot ratio), attention should be paid to quantifying the role of roots in aquatic plant stoichiometry, nutrient turnover and nutrient retention.
【 授权许可】
Unknown