期刊论文详细信息
IEEE Access
A Wideband and Low-Loss Spatial Power Combining Module for mm-Wave High-Power Amplifiers
Marianna V. Ivashina1  Rob Maaskant1  Artem Roev1  Christian Fager1  Parastoo Taghikhani1 
[1] Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden;
关键词: Antenna feed;    array amplifiers;    integration;    MMIC;    mode converter;    spatial power combining;   
DOI  :  10.1109/ACCESS.2020.3033623
来源: DOAJ
【 摘 要 】

We present a low-loss power combiner, providing a highly integrated interface from an array of mm-wave power amplifiers (PAs) to a single standard rectangular waveguide (WG). The PAs are connected to an array of parallel and strongly coupled microstrip lines that excite a substrate integrated waveguide (SIW) based cavity. The spatially distributed modes then couple from the cavity to the rectangular WG mode through an etched aperture and two stepped ridges embedded in the WG flange. A new co-design procedure for the PA-integrated power combining module is presented that targets optimal system-level performance: output power, efficiency, linearity. A commercial SiGe quad-channel configurable transmitter and a standard gain horn antenna were interfaced to both ends of this module to experimentally demonstrate the proposed power combining concept. Since the combiner input ports are non-isolated, we have investigated the effects of mutual coupling on the transmitter performance by using a realistic PA model. This study has shown acceptable relative phase and amplitude differences between the PAs, i.e. within ±15° and ±1 dB. The increase of generated output power with respect to a single PA at the 1-dB compression point remains virtually constant (5.5 dB) over a 42% bandwidth. The performed statistical active load variation indicates that the interaction between the PAs through the combiner has negligible effect on the overall linearity. Furthermore, the antenna pattern measured with this combiner shows negligible deformation due to non-identical PAs. This represents experimental prove-of-concept of the proposed spatial power combining module, which can be suitable for applications in MIMO array transmitters with potentially coupled array channels.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次