| Materials | |
| Dynamic Recrystallization and Its Effect on Superior Plasticity of Cold-Rolled Bioabsorbable Zinc-Copper Alloys | |
| Maria Wątroba1  Robert Chulist2  Karol Janus2  Magdalena Bieda2  Krzysztof Sztwiertnia2  Łukasz Maj2  Anna Jarzębska2  Łukasz Rogal2  Daniel Wojtas2  | |
| [1] Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland;Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland; | |
| 关键词: bioabsorbable zinc; microstructure; superplasticity; dynamic recrystallization; | |
| DOI : 10.3390/ma14133483 | |
| 来源: DOAJ | |
【 摘 要 】
High plasticity of bioabsorbable stents, either cardiac or ureteral, is of great importance in terms of implants’ fabrication and positioning. Zn-Cu constitutes a promising group of materials in terms of feasible deformation since the superplastic effect has been observed in them, yet its origin remains poorly understood. Therefore, it is crucial to inspect the microstructural evolution of processed material to gain an insight into the mechanisms leading to such an extraordinary property. Within the present study, cold-rolled Zn-Cu alloys, i.e., Zn with addition of 1 wt.% and 5 wt.% of Cu, have been extensively investigated using scanning electron microscopy as well as transmission electron microscopy, so as to find out the possible explanation of superior plasticity of the Zn-Cu alloys. It has been stated that the continuous dynamic recrystallization has a tremendous impact on superior plasticity reported for Zn-1Cu alloy processed by rolling to 90% of reduction rate. The effect might be supported by static recrystallization, provoking grain growth and thereby yielding non-homogeneous microstructures. Such heterogeneous microstructure enables better formability since it increases the mean free path for dislocation movement.
【 授权许可】
Unknown