期刊论文详细信息
Maejo International Journal of Science and Technology
Anadaptiveradialbasisfunctionneuralnetwork(RBFNN) controlofenergystoragesystem foroutputtrackingofa permanent magnet wind generator
Abu H. M. A. Rahim1 
[1] DepartmentofElectricalEngineering,KingFahdUniversityofPetroleumandMinerals, Dhahran, Saudi Arabia;
关键词: adaptive control;    energy storage control;    radial basis function neural network;    permanent magnet synchronous generator;    wind turbine;   
DOI  :  10.14456/mijst.2014.6
来源: DOAJ
【 摘 要 】

Theconvertersofapermanentmagnetsynchronousgeneratorhavetobe properlycontrolledtoachievemaximumtransferofenergyfromwind.Toachiev ethis goal,thisarticleemploysanenergystoragedeviceconsistingofanenergycapacitor interfaced through a voltage source converter which is operated through a smart adaptive radial basis function neural network (RBFNN) controller. The proposed adaptive strategy employsonlineneuralnetworktrainingasopposedtoconventionalprocedurerequiring offlinetrainingofalargedata-set.TheRBFNNcontrollerwastestedforvarious contingencies in the wind generator system. Th e adaptive onlinecontrollerisobserved to provideexcellentdampingprofilefollowinglowgridvoltageconditionsaswellasfor other large disturbances. The controlled converter DC capacitor voltage helpsmaintaina smooth flow of real and reactive power in the system.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次