Maejo International Journal of Science and Technology | |
Anadaptiveradialbasisfunctionneuralnetwork(RBFNN) controlofenergystoragesystem foroutputtrackingofa permanent magnet wind generator | |
Abu H. M. A. Rahim1  | |
[1] DepartmentofElectricalEngineering,KingFahdUniversityofPetroleumandMinerals, Dhahran, Saudi Arabia; | |
关键词: adaptive control; energy storage control; radial basis function neural network; permanent magnet synchronous generator; wind turbine; | |
DOI : 10.14456/mijst.2014.6 | |
来源: DOAJ |
【 摘 要 】
Theconvertersofapermanentmagnetsynchronousgeneratorhavetobe properlycontrolledtoachievemaximumtransferofenergyfromwind.Toachiev ethis goal,thisarticleemploysanenergystoragedeviceconsistingofanenergycapacitor interfaced through a voltage source converter which is operated through a smart adaptive radial basis function neural network (RBFNN) controller. The proposed adaptive strategy employsonlineneuralnetworktrainingasopposedtoconventionalprocedurerequiring offlinetrainingofalargedata-set.TheRBFNNcontrollerwastestedforvarious contingencies in the wind generator system. Th e adaptive onlinecontrollerisobserved to provideexcellentdampingprofilefollowinglowgridvoltageconditionsaswellasfor other large disturbances. The controlled converter DC capacitor voltage helpsmaintaina smooth flow of real and reactive power in the system.
【 授权许可】
Unknown