期刊论文详细信息
Coatings
Melioration of Electrical and Optical Properties of Al and B Co-Doped ZnO Transparent Semiconductor Thin Films
Shih-Hsun Yu1  Chien-Yie Tsay1 
[1] Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan;
关键词: transparent oxide semiconductor;    ZnO;    Al doping;    Al-B co-doping;    sol-gel method;   
DOI  :  10.3390/coatings11101259
来源: DOAJ
【 摘 要 】

Undoped, Al-doped and Al-B co-doped ZnO transparent semiconductor thin films were deposited on glass substrates by sol-gel method and spin coating technique. This study investigated the influence of Al (2 at.%) doping and Al (2 at.%)-B (1 or 2 at.%) co-doping on the microstructural, surface morphological, electrical and optical properties of the ZnO-based thin films. XRD analysis indicated that all as-prepared ZnO-based thin films were polycrystalline with a single-phase hexagonal wurtzite structure. The substitution of extrinsic dopants (Al or Al-B) into ZnO thin films can significantly degrade the crystallinity, refine the microstructures, improve surface flatness, enhance the optical transparency in the visible spectrum and lead to a shift in the absorption edge toward the short-wavelength direction. Experimental results showed that the Al-doped and Al-B co-doped ZnO thin films exhibited high average transmittance (>91.3%) and low average reflectance (<10%) in the visible region compared with the ZnO thin film. The optical parameters, including the optical bandgap, Urbach energy, extinction coefficient and refractive index, changed with the extrinsic doping level. Measured results of electrical properties revealed that the singly doped and co-doped samples exhibited higher electron concentrations and lower resistivities than those of the undoped sample and suggested that 2 at.% Al and 1 at.% B were the optimum dopant concentrations for achieving the best electrical properties in this study.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:5次