期刊论文详细信息
Sustainability
Estimating Avocado Sales Using Machine Learning Algorithms and Weather Data
Emmanuel Lasso1  JuanCarlos Corrales1  Juan Rincon-Patino1 
[1] Grupo de ingeniería Telemática, Universidad del Cauca, Campus Tulcán, Popayán 190002, Colombia;
关键词: avocado;    weather;    regression model;    machine learning;    mobile application;   
DOI  :  10.3390/su10103498
来源: DOAJ
【 摘 要 】

Persea americana, commonly known as avocado, is becoming increasingly important in global agriculture. There are dozens of avocado varieties, but more than 85% of the avocados harvested and sold in the world are of the Hass one. Furthermore, information on the market of agricultural products is valuable for decision-making; this has made researchers try to determine the behavior of the avocado market, based on data that might affect it one way or another. In this paper, a machine learning approach for estimating the number of units sold monthly and the total sales of Hass avocados in several cities in the United States, using weather data and historical sales records, is presented. For that purpose, four algorithms were evaluated: Linear Regression, Multilayer Perceptron, Support Vector Machine for Regression and Multivariate Regression Prediction Model. The last two showed the best accuracy, with a correlation coefficient of 0.995 and 0.996, and a Relative Absolute Error of 7.971 and 7.812, respectively. Using the Multivariate Regression Prediction Model, an application that allows avocado producers and sellers to plan sales through the estimation of the profits in dollars and the number of avocados that could be sold in the United States was created.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次