期刊论文详细信息
Nutrients
Procyanidin—Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro
Priscilla Bagano Vilas Boas1  Jean-Marc Chatel1  CatherineM. G. C. Renard2  Romain Bott2  Carine Le Bourvellec2  Claire Dufour2  Philippe Ruiz3  Pascale Lepercq3  Pascale Mosoni3  Sophie Comtet-Marre3  Pauline Auffret3 
[1] Micalis, INRA, AgroParisTech, Université Paris-Saclay, F-7800 Jouy-en-Josas, France;UMR408 SQPOV «Sécurité et Qualité des Produits d’Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France;Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France;
关键词: in vitro batch fermentation;    polyphenols;    dietary fiber;    16S metabarcoding;    metabotype;   
DOI  :  10.3390/nu11030664
来源: DOAJ
【 摘 要 】

B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次