期刊论文详细信息
Applied Sciences
Time–Frequency Domain Characteristics of Acoustic Emission Signals and Critical Fracture Precursor Signals in the Deep Granite Deformation Process
Liyuan Liu1  Jiwei Zhao1  Le Zhang1  Hongguang Ji1 
[1] College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
关键词: rock mechanics;    deep granite;    acoustic emission;    precursory characteristics;    time–frequency analysis;   
DOI  :  10.3390/app11178236
来源: DOAJ
【 摘 要 】

To study the crack evolution law and failure precursory characteristics of deep granite rocks in the process of deformation and failure under high confining pressure, granite samples obtained from a depth of 1150 m are tested using a TAW-2000 triaxial hydraulic servo testing machine and a PCI-II acoustic emission monitoring system. Based on the stress–strain curve and IET function, the loading process of the sample is divided into five stages: crack closure, linear elastic deformation, microcrack generation and development, macroscopic fracture generation and energy surge, and post-peak failure. The evolution trend and fracture evolution law of the acoustic emission signal event interval function in different stages are analyzed. In particular, the signals with an amplitude greater than 85 dB, a peak frequency greater than 350 kHz, and a frequency centroid greater than 275 kHz are defined as the failure precursor signals before the rock reaches the peak stress. The defined precursor signal conditions agree well with the experimental results. The time–frequency analysis and wavelet packet decomposition of the precursor signal are performed on the extracted characteristic signal of the failure precursor. The results show that the time-domain signal is in the form of a continuous waveform, and the frequency-domain waveform has multi-peak coexistence that is mainly concentrated in the high-frequency region. The energy distribution obtained by the wavelet packet decomposition of the characteristic signal is verified with the frequency-domain waveform. The energy distribution of the signal is mainly concentrated in the 343.75–375 kHz frequency band, followed by the 281.25–312.5 kHz frequency band. The energy proportion of the high-frequency signal increases with the confining pressure.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次