期刊论文详细信息
Complex Manifolds | |
Kobayashi—Hitchin correspondence for twisted vector bundles | |
Perego Arvid1  | |
[1] Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146Genova, Italy.; | |
关键词: twisted vector bundles; semistability; hermite-einsten metrics; 32l05; 53c07; 14j60; 53d18; 53c28; 53c15; 15a66; 32l25; | |
DOI : 10.1515/coma-2020-0107 | |
来源: DOAJ |
【 摘 要 】
We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.
【 授权许可】
Unknown