期刊论文详细信息
Materials & Design
Laser powder bed fusion additive manufacturing of highly conductive parts made of optically absorptive carburized CuCr1 powder
Pushkar Prakash Dhekne1  Jean-Pierre Kruth2  Kim Vanmeensel2  Suraj Dinkar Jadhav3  Brecht Van Hooreweder3  Etienne Brodu3  Jan Van Humbeeck4  Sasan Dadbakhsh4 
[1] Corresponding author.;Member of Flanders Make, Celestijnenlaan 300, B-3001 Heverlee, Belgium;KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, B-3001 Heverlee, Belgium;;KU Leuven, Department of Mechanical Engineering, &
关键词: Carburized CuCr1 powder;    Additive manufacturing;    Laser powder bed fusion;    Selective laser melting;    Copper reflectivity;    Metal matrix composite;   
DOI  :  
来源: DOAJ
【 摘 要 】

Fabrication of fully dense and highly conductive copper alloy parts via laser-based additive manufacturing (L-AM) is challenging due to the high optical reflectivity of copper at λ = 1060 – 1080 nm and high thermal conductivity. To overcome this, the use of optically absorptive surface-modified copper powders is being evaluated in the laser powder bed fusion (LPBF) process. Although the surface-modified powders exhibit high optical absorption at room temperature, not all of them allow the fabrication of fully dense parts at a laser power below 500 W. Accordingly, this article proposes the use of optically absorptive carburized CuCr1 powder for the consistent fabrication of copper parts. Moreover, a densification mechanism of parts is discussed to explain the distinct LPBF processing behavior of different surface-modified powders, such as carburized CuCr1 and carbon mixed CuCr1 powders, albeit having similar room temperature optical absorption. This investigation clearly outlines the advantage of a firmly bonded modified layer present on the surface of the carburized CuCr1 powder over a loosely attached carbon nanoparticle layer present in the carbon-mixed CuCr1 powder. Apart from the successful fabrication of CuCr1 parts, fabricated parts are subjected to two different post-heat treatments, and it is shown that the final properties can be customized by applying tailored post-heat treatments.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次