期刊论文详细信息
Acta Pharmaceutica Sinica B
Self-assembled ternary hybrid nanodrugs for overcoming tumor resistance and metastasis
Dapeng Li1  Yanbing Xue2  Xin Wang2  Bing Wei2  Longshun Yang2  Xu Cheng2  Rupei Tang2  Jiaxi Xu2  Qin Fang3 
[1]School of Life Sciences, Anqing Normal University, Anqing 246133, China
[2]Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
[3]School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
关键词: Drugs dimer;    Multidrug resistance;    Metastasis;    Charge reversal;    Proton sponge;    Redox sensitive;   
DOI  :  
来源: DOAJ
【 摘 要 】
Traditional chemotherapy exhibits a certain therapeutic effect toward malignant cancer, but easily induce tumor multidrug resistance (MDR), thereby resulting in the progress of tumor recurrence or metastasis. In this work, we deigned ternary hybrid nanodrugs (PEI/DOX@CXB-NPs) to simultaneously combat against tumor MDR and metastasis. In vitro results demonstrate this hybrid nanodrugs could efficiently increase cellular uptake at pH 6.8 by the charge reversal, break lysosomal sequestration by the proton sponge effect and trigger drugs release by intracellular GSH, eventually leading to higher drugs accumulation and cell-killing in drug-sensitive/resistant cells. In vivo evaluation revealed that this nanodrugs could significantly inhibit MDR tumor growth and simultaneously prevent A549 tumor liver/lung metastasis owing to the specifically drugs accumulation. Mechanism studies further verified that hybrid nanodrugs were capable of down-regulating the expression of MDR or metastasis-associated proteins, lead to the enhanced anti-MDR and anti-metastasis effect. As a result, the multiple combination strategy provided an option for effective cancer treatment, which could be potentially extended to other therapeutic agents or further use in clinical test.
【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次