期刊论文详细信息
Frontiers in Big Data
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
Javier Duarte1  Steven Tsan1  Pratik Jawahar2  Thea Aarrestad2  Maurizio Pierini2  Nadezda Chernyavskaya2  Kinga A. Wozniak3  Jennifer Ngadiuba4 
[1] Department of Physics, University of California, San Diego, San Diego, CA, United States;Experimental Physics Department, European Center for Nuclear Research (CERN), Geneva, Switzerland;Faculty of Computer Science, University of Vienna, Vienna, Austria;Lauritsen Laboratory of High Energy Physics, California Institute of Technology, Pasadena, CA, United States;Particle Physics Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, United States;
关键词: anomaly detection (AD);    variational auto encoder (VAE);    normalizing flow (NF);    Large Hadron Collider (LHC);    new physics beyond standard model;    graph convolutional network (GCN);   
DOI  :  10.3389/fdata.2022.803685
来源: DOAJ
【 摘 要 】

We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:10次