Cognitive Research | |
Unpacking the Black Box of Translation: A framework for infusing spatial thinking into curricula | |
Kelly R. Fisher1  Kristin M. Gagnier1  | |
[1] Science of Learning Institute Johns Hopkins University; | |
关键词: Spatial thinking; Science education; Research-to-practice; Knowledge translation; Knowledge utilization; | |
DOI : 10.1186/s41235-020-00222-9 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Spatial thinking skills are strongly correlated with achievement in Science, Technology, Engineering, and Mathematics (STEM) fields and emerging research suggests that interventions aimed at building students’ skills will likely yield measurable impacts on learning across K-12 settings. The importance of spatial thinking in science has received increased attention in academic discussions; however, the intentional practice of teaching spatial thinking skills is still largely absent from K-12 education. The translation of science into educational practice is challenging for a variety of reasons, including the difficulty “translating” research findings into practical applications and limited resources to support its development, implementation, and evaluation. Given these obstacles, one may ask “can spatial thinking be brought to the classroom?” In this paper, we argue that in order to effectively move research into the classroom, we must first systematically explore how spatial thinking can be translated into practice. Approach We present a use-inspired, integrative framework that draws upon planned action and translation science theories, as well as research from cognitive, developmental, educational, and implementation sciences, to guide the infusion of spatial thinking into science curricula. In the Knowledge Translation Framework (KTF), translation is conceived as a multistage process, proceeding through seven stages: (1) the identification of relevant disciplinary and contextual knowledge, (2) the synthesis and translation of knowledge into guidelines to support the infusion of knowledge into the curriculum, (3) the development of tools to support curriculum development, implementation, and track the translation process, (4) the iterative development and refinement of the spatially-enhanced curriculum, (5) the creation of an analysis plan to evaluate the impact of the spatial enhancements and other contextual features on learning, (6) the development and implementation of an intervention plan, and (7) the evaluation of the intervention. Conclusion The KTF is a use-inspired, integrative framework that unpacks the translation process and offers practical guidance on how a team may synthesize scientific and contextual knowledge, infuse it into a curriculum, and evaluate its impact in ways that will yield scientific understanding and practical knowledge. We also provide illustrative examples of how this approach was used to spatially enhance an elementary science curriculum.
【 授权许可】
Unknown