期刊论文详细信息
BMC Plant Biology
Identification of genes regulating ovary differentiation after pollination in hazel by comparative transcriptome analysis
Pengfei Ai1  Yuchu Zhang2  Yunqing Cheng2  Chunming Liu2  Jianfeng Liu2 
[1] College of Bioscience & Bioengineering, Hebei University of Science and Technology;Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University;
关键词: Hazel;    Ovary;    Ovule;    Transcriptome;   
DOI  :  10.1186/s12870-018-1296-3
来源: DOAJ
【 摘 要 】

Abstract Background Hazel (Corylus spp.) exhibits ovary differentiation and development that is initiated from the ovary primordium after pollination, conferring the plant with a unique delayed fertilization. Failure of development of the ovary and ovule after pollination can lead to ovary abortion and blank fruit formation, respectively, with consequent yield loss. However, the genes involved in ovary and ovule differentiation and development are largely unknown. Results In unpollinated pistillate inflorescences (stage F), the stigma shows an extension growth pattern. After pollination, a rudimentary ovary begins to form (stage S), followed by ovule differentiation (stage T) and growth (stage FO). Total RNA was obtained from pistillate inflorescences or young ovaries at stage F, S, T and FO, and sequencing was carried out on a HiSeq 4000 system. De novo assembly of sequencing data yielded 62.58 Gb of nucleotides and 90,726 unigenes; 5524, 3468, and 8714 differentially expressed transcripts were identified in F-vs-S, S-vs-T, and T-vs-FO paired comparisons, respectively. An analysis of F-vs-S, S-vs-T, and T-vs-FO paired comparisons based on annotations in the Kyoto Encyclopedia of Genes and Genomes revealed six pathways that were significantly enriched during ovary differentiation, including ko04075 (Plant hormone signal transduction). Auxin level increased after pollination, and an immunohistochemical analysis indicated that auxin was enriched at the growth center of pistillate inflorescences and young ovaries. These results indicate that genes related to auxin biosynthesis, transport, signaling, the floral quartet model, and flower development may regulate ovary and ovule differentiation and development in hazel. Conclusions Our findings provide insight into the molecular mechanisms of ovary differentiation and development after pollination in this economically valuable plant.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次