期刊论文详细信息
Sensors
Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament
Abiodun Komolafe1  Steve Beeby1  Russel Torah1  Mahmoud Wagih1  Yang Wei2 
[1] School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
关键词: antenna;    electrically-small antennas;    E-textiles;    impedance matching;    Internet of Things;    RFID;   
DOI  :  10.3390/s20123435
来源: DOAJ
【 摘 要 】

This paper details the design, fabrication and testing of flexible textile-concealed Radio Frequency Identification (RFID) tags for wearable applications in a smart city/smart building environment. The proposed tag designs aim to reduce the overall footprint, enabling textile integration whilst maintaining the read range. The proposed RFID filament is less than 3.5 mm in width and 100 mm in length. The tag is based on an electrically small (0.0033 λ 2 ) high-impedance planar dipole antenna with a tuning loop, maintaining a reflection coefficient less than −21 dB at 915 MHz, when matched to a commercial RFID chip mounted alongside the antenna. The antenna strip and the RFID chip are then encapsulated and integrated in a standard woven textile for wearable applications. The flexible antenna filament demonstrates a 1.8 dBi gain which shows a close agreement with the analytically calculated and numerically simulated gains. The range of the fabricated tags has been measured and a maximum read range of 8.2 m was recorded at 868 MHz Moreover, the tag’s maximum calculated range at 915 MHz is 18 m, which is much longer than the commercially available laundry tags of larger length and width, such as Invengo RFID tags. The reliability of the proposed RFID tags has been investigated using a series of tests replicating textile-based use case scenarios which demonstrates its suitability for practical deployment. Washing tests have shown that the textile-integrated encapsulated tags can be read after over 32 washing cycles, and that multiple tags can be read simultaneously while being washed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次