期刊论文详细信息
MATEC Web of Conferences
Instability of a viscous interface under horizontal quasi-periodic oscillation
El Jaouahiry A.1  Assoul M.1  Echchadli M.1  Aniss S.1 
[1] University of Hassan II, Faculty of Sciences Aïn-Chock, Laboratory of Mechanic;
关键词: Linear stability;    quasi-periodic oscillation;    Runge-Kutta;    Floquet’s theory;    instability of Kelvin-Helmholtz;    parametric resonance.;   
DOI  :  10.1051/matecconf/201928607010
来源: DOAJ
【 摘 要 】

We study the linear stability of two superposed layers of viscous, immiscible fluids of different densities. The whole system is subject to horizontal quasi-periodic oscillation with two incommensurates frequencies ω1 and ω2. The spectral method and Floquet’s theory combined with Runge-Kutta method are used to solve numericelly the linear problem. We analyse the influence of the frequencies ratioω=ω2ω1$ \omega= {{{\omega _1}} \over {{\omega _2}}} $, on the mariginal stability. The numerical solution shows that the quasi-periodic excitation has a stabilizing or a destabilizing effect on the Kelvin-Helmholtz instability as well as in the parametric resonances depending on the frequency ratio and the amplitudes ratio α=α2α1$ \alpha= {{{\alpha _2}} \over {{\alpha _1}}} $.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次