期刊论文详细信息
PeerJ
Handcycling with concurrent lower body low-frequency electromyostimulation significantly increases acute oxygen uptake: implications for rehabilitation and prevention
Lars Donath1  Steffen Held1  Ludwig Rappelt1 
[1] Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne,Germany;
关键词: Electrical muscle stimulation;    EMS;    Cardiorespiratory fitness;    Endurance;    SCI;    Spinal cord injury;   
DOI  :  10.7717/peerj.13333
来源: DOAJ
【 摘 要 】

Background Acute increases in exercise-induced oxygen uptake (V̇O2) is crucial for aerobic training adaptations and depends on how much muscle mass is involved during exercising. Thus, handcycling is per se limited for higher maximal oxygen uptakes (V̇O2max) due to restricted muscle involvement. Handcycling with additional and simultaneous application of low-frequency electromyostimulation (EMS) to the lower extremities might be a promising stimulus to improve aerobic capacity in disabled and rehabilitative populations. Method Twenty-six healthy young adults (13 female, age: 23.4 ± 4.5 years, height: 1.77 ± 0.09 m, mass: 71.7 ± 16.7 kg) completed 4 ×10 minutes of sitting (SIT), sitting with concurrent EMS (EMS_SIT), handcycling (60 rpm, 1/2 bodyweight as resistance in watts) (HANDCYCLE) and handcycling with concurrent EMS of the lower extremities (EMS_HANDCYCLE). During EMS_SIT and EMS_HANDCYCLE, low frequency EMS (impulse frequency: 4Hz, impulse width: 350 µs, continuous stimulation) was applied to gluteal, quadriceps and calf muscles. The stimulation intensity was selected so that the perceived pain could be sustained for a duration of 10 minutes (gluteus: 80.0 ± 22.7 mA, quadriceps: 94.5 ± 20.5 mA, calves: 77.5 ± 19.1 mA). Results Significant mode-dependent changes of V̇O2 were found (p < 0.001, ηp2 = 0.852). Subsequent post-hoc testing indicated significant difference between SIT vs. EMS_SIT (4.70 ± 0.75 vs. 10.61 ± 4.28 ml min−1 kg−1, p < 0.001), EMS_SIT vs. HANDCYCLE (10.61 ± 4.28 vs. 13.52 ± 1.40 ml min−1 kg−1, p = 0.005), and between HANDCYCLE vs. EMS_HANDCYCLE (13.52 ± 1.40 vs. 18.98 ± 4.89 ml min−1 kg−1, p = 0.001). Conclusion Handcycling with simultaneous lower body low-frequency EMS application elicits notably higher oxygen uptake during rest and moderately loaded handcycling and may serve as an additional cardiocirculatory training stimuli for improvements in aerobic capacity in wheelchair and rehabilitation settings.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次