期刊论文详细信息
Symmetry
Omnidirectional Mobile Robot Dynamic Model Identification by NARX Neural Network and Stability Analysis Using the APLF Method
Liang Xin1  Yuchao Wang1  Huixuan Fu1 
[1] College of Automation, Harbin Engineering University, Harbin 150000, China;
关键词: omnidirectional mobile robot;    dynamics model;    NARX neural network;    stability analysis;    activation path-dependent Lyapunov function;   
DOI  :  10.3390/sym12091430
来源: DOAJ
【 摘 要 】

In this paper, the NARX neural network system is used to identify the complex dynamics model of omnidirectional mobile robot while rotating with moving, and analyze its stability. When the mobile robot model rotates and moves at the same time, the dynamic model of the mobile robot is complex and there is motion coupling. The change of the model in different states is a kind of symmetry. In order to solve the problem that there is a big difference between the mechanism modeling motion simulation and the actual data, the dynamic model identification of mobile robot in special state based on NARX neural network is proposed, and the stability analysis method is given. To verify that the dynamic model of NARX identification is consistent with that of the mobile robot, the Activation Path-Dependent Lyapunov Function (APLF) algorithm is used to distinguish the NARX neural network model expressed by LDI. However, the APLF method needs to calculate a large number of LMIs in practice and takes a lot of time, and, to solve this problem, an optimized APLF method is proposed. The experimental results verify the effectiveness of the theoretical method.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次