期刊论文详细信息
Materials
Anodizing of Hydrogenated Titanium and Zirconium Films
Alexander Poznyak1  Marco Salerno2  Andrei Pligovka3 
[1] Department of Electronic Technology and Engineering, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus;Department of Functional Materials and Hydrogen Technology, Military University of Technology, 2 Ka-liskiego Str., 00-908 Warsaw, Poland;Research and Development Laboratory 4.10 “Nanotechnologies”, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus;
关键词: anodizing;    TiO2;    ZrO2;    titanium oxide;    zirconium oxide;    valve metal;   
DOI  :  10.3390/ma14247490
来源: DOAJ
【 摘 要 】

Magnetron-sputtered thin films of titanium and zirconium, with a thickness of 150 nm, were hydrogenated at atmospheric pressure and a temperature of 703 K, then anodized in boric, oxalic, and tartaric acid aqueous solutions, in potentiostatic, galvanostatic, potentiodynamic, and combined modes. A study of the thickness distribution of the elements in fully anodized hydrogenated zirconium samples, using Auger electron spectroscopy, indicates the formation of zirconia. The voltage- and current-time responses of hydrogenated titanium anodizing were investigated. In this work, fundamental possibility and some process features of anodizing hydrogenated metals were demonstrated. In the case of potentiodynamic anodizing at 0.6 M tartaric acid, the increase in titanium hydrogenation time, from 30 to 90 min, leads to a decrease in the charge of the oxidizing hydrogenated metal at an anodic voltage sweep rate of 0.2 V·s−1. An anodic voltage sweep rate in the range of 0.05–0.5 V·s−1, with a hydrogenation time of 60 min, increases the anodizing efficiency (charge reduction for the complete oxidation of the hydrogenated metal). The detected radical differences in the time responses and decreased efficiency of the anodic process during the anodizing of the hydrogenated thin films, compared to pure metals, are explained by the presence of hydrogen in the composition of the samples and the increased contribution of side processes, due to the possible features of the formed oxide morphologies.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次