期刊论文详细信息
Проблемы анализа | |
A lower bound for the L_2[-1,1]-norm of the logarithmic derivative of polynomials with zeros on the unit circle | |
Komarov M. A.1  | |
[1] Vladimir State University; | |
关键词: logarithmic derivative; C-polynomial; simplest fraction; norm; unit circle; | |
DOI : 10.15393/j3.art.2019.6030 | |
来源: DOAJ |
【 摘 要 】
Let C be the unit circle {z: |z| = 1} and Qn(z) bean arbitrary C-polynomial (i. e., all its zeros z1, . . ., zn ∈ C). We prove that the norm of the logarithmic derivative Q′n/Qn in the complex space L_2[−1,1] is greater than 1/8.
【 授权许可】
Unknown