期刊论文详细信息
Nanomaterials
Subwavelength Silicon Nanoblocks for Directional Emission Manipulation
Xiaoming Zhang1  Jian Xu2  Zi-Lan Deng2  Xiangping Li2  Tianyue Zhang2  Xuewei Li2 
[1] College of Physics Science and Engineering Technology, Yichun University, Yichun 336000, China;Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China;
关键词: unidirectional emission;    all-dielectric nanoantennas;    fluorescence;    nanophotonics;   
DOI  :  10.3390/nano10061242
来源: DOAJ
【 摘 要 】

Manipulating the light emission direction and boosting its directivity have essential importance in integrated nanophotonic devices. Here, we theoretically propose a single dielectric silicon nanoblock as an efficient, multifunctional and ultracompact all-dielectric nanoantenna to direct light into a preferential direction. Unidirectional scattering of a plane wave as well as switchable directive emission fed by a localized emitter are demonstrated within the nanoantenna. The high directionalities are revealed to originate from a variety of mechanisms that can coexist within a single nanoblock, which contribute to the far-field radiation patterns of the outcoming light, thanks to the wealth of multipolar electric and magnetic resonances. The efficient beam redirections are also observed, which are sensitive to the local configurations of the emitter antenna coupled system. The designed antenna, with extreme geometry simplicity, ultracompact and low-loss features, could be favorable for highly sensitive sensing as well as applications in optical nanocircuits.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次