Entropy | |
Sequential Change-Point Detection via Online Convex Optimization | |
Huan Xu1  Yang Cao1  Yao Xie1  Liyan Xie1  | |
[1] H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; | |
关键词: sequential methods; change-point detection; online algorithms; | |
DOI : 10.3390/e20020108 | |
来源: DOAJ |
【 摘 要 】
Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators constructed using online convex optimization algorithms such as online mirror descent, which provides a more versatile approach to tackling complex situations where recursive maximum likelihood estimators cannot be found. When the underlying distributions belong to a exponential family and the estimators satisfy the logarithm regret property, we show that this approach is nearly second-order asymptotically optimal. This means that the upper bound for the false alarm rate of the algorithm (measured by the average-run-length) meets the lower bound asymptotically up to a log-log factor when the threshold tends to infinity. Our proof is achieved by making a connection between sequential change-point and online convex optimization and leveraging the logarithmic regret bound property of online mirror descent algorithm. Numerical and real data examples validate our theory.
【 授权许可】
Unknown