Energies | |
Performance Evaluation of 5G Waveforms for Joint Radar Communication over 77 GHz and 24 GHz ISM Bands | |
Fouzia Elbahhar1  Raja Elassali2  Noureddine Idboufker2  Imane Khelouani2  | |
[1] COSYS-LEOST, University Gustave Eiffel, F-59650 Villeneuve d’Ascq, France;SSA, ENSA, University of Cadi Ayyad, Marrakech 40000, Morocco; | |
关键词: OFDM RadCom; UFMC RadCom; 5G; spectral efficiency; 77 GHz; 24 GHz; | |
DOI : 10.3390/en15062049 | |
来源: DOAJ |
【 摘 要 】
The V2X environment poses many challenges to emerging wireless communication systems, while it is crucial to ensure the efficiency and safety of road users. Requiring continual localization of the surroundings and accurate obstacle detection while providing high reliability in dense networks and low latency in high-mobility environment communication systems imposes a challenge to the driver-assistance field given that we are overly limited in terms of frequency bands and resources. Hence, pooling of the available frequency resources between different applications can help increase the spectral efficiency. A new collaborative approach multiplexed in the time domain, namely RadCom, which can be described as a joint radar and communication system that performs both vehicle-to-everything communication and detection of the neighboring obstacles in the vehicular environment, has been proposed to overcome the limitations of the existing conventional radar system. Based on orthogonal frequency division multiplexing (OFDM), this RadCom system proved to be suitable up to now for V2X. Moreover, a new RadCom system based on universal frequency multi-carrier (UFMC), an advanced fifth-generation (5G) waveform, has been proposed to enhance the spectral efficiency and surmount the shortcomings induced by the OFDM waveform. This recent RadCom system has been studied in the new frequency range of 76–81 GHz; precisely, 77 GHz. Hence, in this paper, we propose to compare both subsystems of the proposed RadCom system over two different frequency carriers, 24 GHz and 77 GHz, and to adopt the proper system parametrization in order to meet appropriate wireless solutions for automotive RadCom systems.
【 授权许可】
Unknown