期刊论文详细信息
Opuscula Mathematica
On the boundedness of equivariant homeomorphism groups
Tomasz Rybicki1  Jacek Lech1  Ilona Michalik1 
[1] AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
关键词: principal \(G\)-manifold;    equivariant homeomorphism;    uniformly perfect;    bounded;    \(C^r\) equivariantdiffeomorphism;   
DOI  :  https://doi.org/10.7494/OpMath.2018.38.3.395
来源: DOAJ
【 摘 要 】

Given a principal \(G\)-bundle \(\pi:M\to B\), let \(\mathcal{H}_G(M)\) be the identity component of the group of \(G\)-equivariant homeomorphisms on \(M\). The problem of the uniform perfectness and boundedness of \(\mathcal{H}_G(M)\) is studied. It occurs that these properties depend on the structure of \(\mathcal{H}(B)\), the identity component of the group of homeomorphisms of \(B\), and of \(B\) itself. Most of the obtained results still hold in the \(C^r\) category.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次