期刊论文详细信息
Mathematical Biosciences and Engineering
Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment
Jinyu Wei1  Bin Liu2 
[1] 1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China;2. Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China;
关键词: competition-diffusion-advection;    heterogenous environment;    principal eigenvalue;    global stability;    coexistence steady state;   
DOI  :  10.3934/mbe.2021031
来源: DOAJ
【 摘 要 】

We investigate the global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment. Our result suggests that the sign of $\int_{0}^{L}(m_{1}-m_{2})e^{kx}dx$ plays a significant role in understanding the global dynamics. In addition, the limiting behavior of coexistence steady state is obtained when diffusion rates of two species tend to zero meanwhile.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次