期刊论文详细信息
Molecules
Silk Fibroin-Based Materials for Catalyst Immobilization
Shanshan Lv1 
[1] State Key Laboratory of Organic-Inorganic Composite Materials, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeisanhuanDong Road, Chaoyang District, Beijing 100029, China;
关键词: silk fibroin;    enzyme immobilization;    metal;    metal oxide;    catalyst;   
DOI  :  10.3390/molecules25214929
来源: DOAJ
【 摘 要 】

Silk fibroin is a widely and commercially available natural protein derived from silkworm cocoons. Thanks to its unique amino acid composition and structure, which lead to localized nanoscale pockets with limited but sufficient hydration for protein interaction and stabilization, silk fibroin has been studied in the field of enzyme immobilization. Results of these studies have demonstrated that silk fibroin offers an important platform for covalent and noncovalent immobilization of enzymes through serving as a stabilization matrix/support with high retention of the biological activity of the enzymes of interest. In the hope of providing suggestions for potential future research directions, this review has been written to briefly introduce and summarize key advances in silk fibroin-based materials for immobilization of both enzymes/biocatalysts (including alkaline phosphatase, β-glucosidase, glucose oxidase, lipase, urease, uricase, horseradish peroxidase, catalase, xanthine oxidase, tyrosinase, acetylcholinesterase, neutral protease, α-chymotrypsin, amylase, organophosphorus hydrolase, β-galactosidase, carbonic anhydrase, laccase, zymolyase, phenylalanine ammonia-lyase, thymidine kinase, and several others) and non-enzymatic catalysts (such as Au, Pd, Fe, α-Fe2O3, Fe3O4, TiO2, Pt, ZnO, CuO, Cu2O, Mn3O4, and MnO2).

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次