期刊论文详细信息
Plants
The Common Ice Plant (Mesembryanthemum crystallinum L.)–Phytoremediation Potential for Cadmium and Chromate-Contaminated Soils
Marta Śliwa-Cebula1  Paweł Kaszycki1  Agnieszka Lis-Krzyścin1  Michał Nosek2  Zbigniew Miszalski3  Adriana Kaczmarczyk3 
[1] Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland;Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland;The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
关键词: plant stress tolerance;    heavy metal stress;    chromate;    cadmium;    phytoextraction;    phytostabilization;   
DOI  :  10.3390/plants9091230
来源: DOAJ
【 摘 要 】

The common ice plant (Mesembryanthemum crystallinum L.) is a widely studied model due to its tolerance to numerous biotic and abiotic stresses. In this study, carried out in model pots, the plants were treated with variant doses of Cd(II) and Cr(VI) and proved resistant to extreme levels of these heavy metals. Initial toxicity symptoms were observed upon final concentrations of 818 mg Cd kg−1 soil d.w., and 1699 mg Cr kg−1 applied as potassium chromate. Biometric analyses revealed that none of the Cr(VI) doses affected dry weight of the plant organs thus maintaining the shoot-to-root ratio. The Cd and Cr hypertolerance strategies were divergent and resulted in different accumulation patterns. For the case of Cd(II), an excluder-like mechanism was developed to prevent the plant from toxicity. For chromate, high accumulation potential together with Cr(VI) root-to-shoot translocation at sublethal concentrations was revealed (up to 6152 mg Cr kg−1 shoot at 4248 mg Cr kg−1 soil). It is concluded that M. crystallinum reveals considerable phytoremediation capabilities due to unique growth potential in contaminated substrates and is suitable for bioreclamation of degraded soils. The plant is especially applicable for efficient phytoextraction of chromate-contamination, whereas for Cd-affected areas it may have a phytostabilizing effect.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次