期刊论文详细信息
Applied Network Science
Semi-supervised graph labelling reveals increasing partisanship in the United States Congress
Max Glonek1  Nigel Bean1  Jonathan Tuke1  Lewis Mitchell1 
[1] School of Mathematical Sciences, University of Adelaide;
关键词: Community detection;    Graph labelling;    Random walk;    Markov chain;    Political networks;   
DOI  :  10.1007/s41109-019-0185-5
来源: DOAJ
【 摘 要 】

Abstract Graph labelling is a key activity of network science, with broad practical applications, and close relations to other network science tasks, such as community detection and clustering. While a large body of work exists on both unsupervised and supervised labelling algorithms, the class of random walk-based supervised algorithms requires further exploration, particularly given their relevance to social and political networks. This work refines and expands upon a new semi-supervised graph labelling method, the GLaSS method, that exactly calculates absorption probabilities for random walks on connected graphs. The method models graphs exactly as discrete-time Markov chains, treating labelled nodes as absorbing states. The method is applied to roll call voting data for 42 meetings of the United States House of Representatives and Senate, from 1935 to 2019. Analysis of the 84 resultant political networks demonstrates strong and consistent performance of GLaSS when estimating labels for unlabelled nodes in graphs, and reveals a significant trend of increasing partisanship within the United States Congress.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次