期刊论文详细信息
Applied Sciences
Numerical Assessment of Virtual Control Surfaces for Load Alleviation on Compressor Blades
Valentina Motta1  Dieter Peitsch1  Leonie Malzacher1 
[1] Chair for Aero Engines, Institute of Aeronautics and Astronautics, Technische Universität Berlin, 10623 Berlin, Germany Marchstraße 12-14, 10587 Berlin, Germany;
关键词: unsteady aerodynamics;    adaptive structures;    computational aeroelasticity;    rotorcraft;   
DOI  :  10.3390/app8010125
来源: DOAJ
【 摘 要 】

Virtual control surfaces for the optimization of steady and unsteady airloads on a compressor cascade are assessed numerically. The effects of mechanical surfaces are realized with plasma actuators, located both on the pressure and on the suction side of the blade trailing edge. Suction side plasma actuation is thought to reproduce the effects of mechanical wing spoilers, whereas pressure side plasma actuation is meant to act as a mechanical Gurney flap. Indeed, actuators are operated to generate an induced velocity field that is opposite relative to the direction of the freestream velocity. As a consequence, controlled recirculating flow areas are generated, which modify the effective mean line shape, as well as the position of the Kutta condition application point—and in turn the developed airloads. Proper triggering of pressure/suction side actuation is found to be effective in altering the blade loading, with effects comparable to those of mechanical control surfaces. Traveling wave mode simulations show that significant reductions in the peaks of the blade pitching moment can be achieved on the whole spectrum of interblade phase angles. It is proved that virtual control surfaces can provide effective load alleviation on the cascade, with potential remarkable reduction of fatigue phenomena.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次