期刊论文详细信息
EPJ Data Science
Corporate payments networks and credit risk rating
Fabrizio Lillo1  Elisa Letizia1 
[1] Scuola Normale Superiore;
关键词: Financial networks;    Corporate networks;    Credit risk;    Credit rating;    Machine learning;   
DOI  :  10.1140/epjds/s13688-019-0197-5
来源: DOAJ
【 摘 要 】

Abstract Aggregate and systemic risk in complex systems are emergent phenomena depending on two properties: the idiosyncratic risk of the elements and the topology of the network of interactions among them. While a significant attention has been given to aggregate risk assessment and risk propagation once the above two properties are given, less is known about how the risk is distributed in the network and its relations with its topology. We study this problem by investigating a large proprietary dataset of payments among 2.4M Italian firms, whose credit risk rating is known. We document significant correlations between local topological properties of a node (firm) and its risk. Moreover we show the existence of an homophily of risk, i.e. the tendency of firms with similar risk profile to be statistically more connected among themselves. This effect is observed when considering both pairs of firms and communities or hierarchies identified in the network. We leverage this knowledge to show the predictability of the missing rating of a firm using only the network properties of the associated node.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次