Frontiers in Computational Neuroscience | |
A Neurocomputational Theory of how Explicit Learning Bootstraps Early Procedural Learning | |
F. Gregory eAshby1  Erick Joseph Paul2  | |
[1] University of California Santa Barbara;University of Illinois Urbana Champaign; | |
关键词: Basal Ganglia; Categorization; computational modeling; declarative memory; nondeclarative memory; procedural learning; | |
DOI : 10.3389/fncom.2013.00177 | |
来源: DOAJ |
【 摘 要 】
It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system’s control of motor responses through basal ganglia-mediated loops.
【 授权许可】
Unknown