Transactions of the International Society for Music Information Retrieval | |
Towards Leitmotif Activity Detection in Opera Recordings | |
Michael Krause1  Christof Weiß1  Meinard Müller1  | |
[1] International Audio Laboratories Erlangen, Am Wolfsmantel 33, 91058 Erlangen; | |
关键词: leitmotifs; opera; musical patterns; deep neural networks; sound event detection; | |
DOI : 10.5334/tismir.116 | |
来源: DOAJ |
【 摘 要 】
This paper approaches the automatic detection of musical patterns in audio recordings with a particular focus on leitmotifs, which are specific types of patterns associated with certain characters, places, items, or feelings occurring in an opera or movie soundtrack. The detection of such leitmotifs is particularly challenging since their appearance can change substantially over the course of a musical work. In our case study, we consider a self-contained yet comprehensive scenario comprising 16 recorded performances of Richard Wagner’s four-opera cycle 'Der Ring des Nibelungen', which is a prime example for the use of leitmotifs. Within this scenario, we introduce and formalize the novel task of leitmotif activity detection. Based on a dataset of 200 hours of audio with over 50 000 annotated leitmotif instances, we explore the benefits and limitations of deep-learning techniques for detecting leitmotifs. To this end, we adapt two common deep-learning strategies based on recurrent and convolutional neural networks, respectively. To investigate the robustness of the trained systems, we test their sensitivity to different modifications of the input. We find that our deep-learning systems work well in general but capture confounding factors, such as pitch distributions in leitmotif regions, instead of characteristic musical properties, such as rhythm and melody. Thus, our in-depth analysis demonstrates some challenges that may arise from applying deep-learning approaches for detecting complex musical patterns in audio recordings.
【 授权许可】
Unknown