期刊论文详细信息
Journal of Numerical Analysis and Approximation Theory | |
Local convergence of some Newton-type methods for nonlinear systems | |
Ion Păvăloiu1  | |
[1] Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy; | |
关键词: nonlinear systems of equations; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
In order to approximate the solutions of nonlinear systems\[F(x)=0,\]with \(F:D\subseteq {\mathbb R}^{n}\rightarrow {\mathbb R}^{n}\),\(n\in {\Bbb N}\), we consider the method\begin{align*}x_{k+1} & =x_{k}-A_{k}F(x_{k})\label{f1.4}\\A_{k+1} & =A_{k}(2I-F^{\prime}(x_{k+1})A_{k}),\;k=0,1,..., \,A_{0}\in M_{n}({\Bbb R}), x_0 \in D,\end{align*}and we study its local convergence.
【 授权许可】
Unknown