期刊论文详细信息
Remote Sensing
FastAER Det: Fast Aerial Embedded Real-Time Detection
Stefan Wolf1  Lars Sommer1  Arne Schumann1 
[1] Fraunhofer IOSB, Institute of Optronics, System Technologies and Image Exploitation, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany;
关键词: aerial object detection;    deep learning based detection;    embedded platforms;    runtime optimization;   
DOI  :  10.3390/rs13163088
来源: DOAJ
【 摘 要 】

Automated detection of objects in aerial imagery is the basis for many applications, such as search and rescue operations, activity monitoring or mapping. However, in many cases it is beneficial to employ a detector on-board of the aerial platform in order to avoid latencies, make basic decisions within the platform and save transmission bandwidth. In this work, we address the task of designing such an on-board aerial object detector, which meets certain requirements in accuracy, inference speed and power consumption. For this, we first outline a generally applicable design process for such on-board methods and then follow this process to develop our own set of models for the task. Specifically, we first optimize a baseline model with regards to accuracy while not increasing runtime. We then propose a fast detection head to significantly improve runtime at little cost in accuracy. Finally, we discuss several aspects to consider during deployment and in the runtime environment. Our resulting four models that operate at 15, 30, 60 and 90 FPS on an embedded Jetson AGX device are published for future benchmarking and comparison by the community.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次