Polymers | |
The Relationship between Crystal Structure and Mechanical Performance for Fabrication of Regenerated Cellulose Film through Coagulation Conditions | |
Tessei Kawano1  Yoshito Andou1  Satoshi Iikubo1  | |
[1] Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Fukuoka, Japan; | |
关键词: regenerated cellulose; alkali–urea solution; coagulation conditions; crystal structure; | |
DOI : 10.3390/polym13244450 | |
来源: DOAJ |
【 摘 要 】
Cellulose films regenerated from aqueous alkali–urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH–urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their dielectric constant on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by inter- and intramolecular hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC films strongly correlate to the dielectric constant of solvents used for the coagulation process. This work, therefore, would be able to provide an indicator to control the mechanical performance of RC film depending on its application and to develop detailed researches on controlling the crystal structure of cellulose.
【 授权许可】
Unknown