| Future Transportation | |
| Sensing Technology Survey for Obstacle Detection in Vegetation | |
| Stanley Young1  Michael Blanton2  Peter Graf3  Shreya Lohar4  Lei Zhu4  | |
| [1] Advanced Transportation & Urban Scientist, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA;CTO, Renu Robotics Corp, San Antonio, TX 78247, USA;Computational Science Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA;Department of System Engineering and Engineering Management, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; | |
| 关键词: obstacle detection in vegetation; lidar; radar; thermal camera; autonomous vehicle spatial sensing; data fusion; | |
| DOI : 10.3390/futuretransp1030036 | |
| 来源: DOAJ | |
【 摘 要 】
This study reviews obstacle detection technologies in vegetation for autonomous vehicles or robots. Autonomous vehicles used in agriculture and as lawn mowers face many environmental obstacles that are difficult to recognize for the vehicle sensor. This review provides information on choosing appropriate sensors to detect obstacles through vegetation, based on experiments carried out in different agricultural fields. The experimental setup from the literature consists of sensors placed in front of obstacles, including a thermal camera; red, green, blue (RGB) camera; 360° camera; light detection and ranging (LiDAR); and radar. These sensors were used either in combination or single-handedly on agricultural vehicles to detect objects hidden inside the agricultural field. The thermal camera successfully detected hidden objects, such as barrels, human mannequins, and humans, as did LiDAR in one experiment. The RGB camera and stereo camera were less efficient at detecting hidden objects compared with protruding objects. Radar detects hidden objects easily but lacks resolution. Hyperspectral sensing systems can identify and classify objects, but they consume a lot of storage. To obtain clearer and more robust data of hidden objects in vegetation and extreme weather conditions, further experiments should be performed for various climatic conditions combining active and passive sensors.
【 授权许可】
Unknown