期刊论文详细信息
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Seismic Signal Classification Using Perceptron With Different Learning Rules
Jiun-Der You1  Kou-Yuan Huang1  Fajar Abdurrahman2 
[1] Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan;EECS International Graduate Program, National Chiao Tung University, Hsinchu, Taiwan;
关键词: Learning-rate parameter;    learning rule;    perceptron;    Ricker wavelet;    seismic anomaly;    seismogram;   
DOI  :  10.1109/JSTARS.2020.3026011
来源: DOAJ
【 摘 要 】

Perceptron is adopted to classify the Ricker wavelets and to detect the seismic anomaly in a seismogram. Three learning rules are used in the training of perceptron to solve the decision boundary. The optimal learning-rate parameter is derived. The lower and upper bounds of the learning-rate parameter are derived. It can provide that the learning can converge when the parameter is within the range. The normalized learning rule is derived also. Combining learning rules, a fusion learning rule is proposed. In the experiments, these rules are applied to the detection of a seismic anomaly in the simulated seismogram and to compare the convergence speed. The fusion learning rule has the fastest convergence and is applied to the real seismogram. The seismic anomaly can be detected successfully. It can improve the seismic interpretation.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次