Sustainability | |
An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel | |
Muhammad Ahmad Jamil1  Tahir Rasheed2  Haseeb Yaqoob3  Yew Heng Teoh3  Farooq Sher4  | |
[1] Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang 14300, Malaysia;School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK; | |
关键词: renewable; tire pyrolysis oil; sustainable fuels; tribology; four-ball tester and biodiesel; | |
DOI : 10.3390/su12239975 | |
来源: DOAJ |
【 摘 要 】
The demand for alternative fuels has risen in recent years due to the economic and environmental consequences of conventional fuels. In addition to engine characteristics, i.e., performance, combustion, and emission the lubricity of the considered fuel is an important parameter for its selection. This experimental study shows the tribological performance of the tire pyrolysis oil by using the four-ball tester. Waste tire pyrolysis oil was purified by using the distillation process. The experiment was conducted over 300 s at 40, 50, 63, and 80 kg load, 1800 rpm constant speed, and 27 °C temperature of all fuels on the ASTM D2266 standard. The tribological performance of the tire pyrolysis oil was compared with the BT10 (biodiesel 90%–tire pyrolysis oil 10%) and BT20 (biodiesel 80%–tire pyrolysis oil 20%) and biodiesel. The optical microscope is used to measure the wear scar diameter and then it is examined through a scanning electron microscope. In terms of greater load-carrying capacity, tire pyrolysis oil shows better anti-wear behaviour compared to biodiesel fuel. The wear scar diameter of BT10, BT20, and tire pyrolysis oil was 23.99%, 8.37%, and 32.62%, respectively, lower than the biodiesel fuel at 80 kg load. The SEM micrographs revealed that tire pyrolysis oil and BT10 displayed lower wear as compared to counterparts. Finally, it is concluded that BT10 is the most suitable fuel in terms of tribological performance.
【 授权许可】
Unknown