期刊论文详细信息
Remote Sensing
The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager
Haikuan Feng1  Bo Xu1  Yanjie Wang1  Guijun Yang1  Xiaodong Yang1  Huanhuan Yuan2  Changchun Li2 
[1] Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
关键词: UAV;    snapshot hyperspectral imaging;    radiometric response variation;    POS interpolation;    hyperspectral DOM;    radiometric calibration;   
DOI  :  10.3390/rs9070642
来源: DOAJ
【 摘 要 】

Hyperspectral remote sensing is used in precision agriculture to remotely and quickly acquire crop phenotype information. This paper describes the generation of a digital orthophoto map (DOM) and radiometric calibration for images taken by a miniaturized snapshot hyperspectral camera mounted on a lightweight unmanned aerial vehicle (UAV). The snapshot camera is a relatively new type of hyperspectral sensor that can acquire an image cube with one spectral and two spatial dimensions at one exposure. The images acquired by the hyperspectral snapshot camera need to be mosaicked together to produce a DOM and radiometrically calibrated before analysis. However, the spatial resolution of hyperspectral cubes is too low to mosaic the images together. Furthermore, there are no systematic radiometric calibration methods or procedures for snapshot hyperspectral images acquired from low-altitude carrier platforms. In this study, we obtained hyperspectral imagery using a snapshot hyperspectral sensor mounted on a UAV. We quantitatively evaluated the radiometric response linearity (RRL) and radiometric response variation (RRV) and proposed a method to correct the RRV effect. We then introduced a method to interpolate position and orientation system (POS) information and generate a DOM with low spatial resolution and a digital elevation model (DEM) using a 3D mesh model built from panchromatic images with high spatial resolution. The relative horizontal geometric precision of the DOM was validated by comparison with a DOM generated from a digital RGB camera. A surface crop model (CSM) was produced from the DEM, and crop height for 48 sampling plots was extracted and compared with the corresponding field-measured crop height to verify the relative precision of the DEM. Finally, we applied two absolute radiometric calibration methods to the generated DOM and verified their accuracy via comparison with spectra measured with an ASD Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA). The DOM had high relative horizontal accuracy, and compared with the digital camera-derived DOM, spatial differences were below 0.05 m (RMSE = 0.035). The determination coefficient for a regression between DEM-derived and field-measured crop height was 0.680. The radiometric precision was 5% for bands between 500 and 945 nm, and the reflectance curve in the infrared spectral region did not decrease as in previous research. The pixel and data sizes for the DOM corresponding to a field area of approximately 85 m × 34 m were small (0.67 m and approximately 13.1 megabytes, respectively), which is convenient for data transmission, preprocessing and analysis. The proposed method for radiometric calibration and DOM generation from hyperspectral cubes can be used to yield hyperspectral imagery products for various applications, particularly precision agriculture.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次