期刊论文详细信息
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
Nonlinear Z‐score modeling for improved detection of cognitive abnormality
Nadine Tatton1  Susan Dickinson1  Rodney Pearlman2  Brian Appleby3  Edward D. Huey4  Masood Manoochehri4  Jill Goldman4  Mario Mendez5  Yvette Bordelon5  Miranda Maldonado5  Giovanni Coppola5  Eliana Marisa Ramos5  Lilah Besser6  Jaya Padmanabhan7  Bradford Dickerson7  Bonnie Wong7  Diane Lucente7  Scott McGinnis7  Alexander Pantelyat8  Chiadi Onyike8  Ann Fishman8  Arthur Toga9  Brad Boeve1,10  David Knopman1,10  Sara Farmer1,10  Maria Lapid1,10  Ruth Kraft1,10  Amy Rindels1,10  Leah Forsberg1,10  Christina Dheel1,10  David Jones1,10  Ralitza Gavrilova1,10  Danielle Brushaber1,10  Kejal Kantarci1,10  Jeremy Syrjanen1,10  Julie Fields1,10  Walter Kremers1,10  Jonathan Graff‐Radford1,10  Deb Gearhart1,10  Neill Graff‐Radford1,11  Zbigniew Wszolek1,11  Rosa Rademakers1,11  Dana Haley1,11  Len Petrucelli1,11  Walter Kukull1,12  Madeline Potter1,13  Kelley Faber1,13  Tatiana Foroud1,13  Codrin Lungu1,14  Margaret Sutherland1,14  John Hsiao1,15  Ian M. Grant1,16  Sandra Weintraub1,16  Emily Rogalski‐Miller1,16  Hiroko Dodge1,17  Patrick Brannelly1,18  Irene Litvan1,19  Anna Karydas2,20  Katherine Rankin2,20  John Kornak2,20  Bruce Miller2,20  Reilly Dever2,20  Adam Boxer2,20  Hilary W. Heuer2,20  Peter Ljubenkov2,20  Ping Wang2,20  Joanne Taylor2,20  Adam M. Staffaroni2,20  Howard Rosen2,20  Jamie Fong2,20  Joel Kramer2,20  ARTFL/LEFFTDS Consortium2,20  Diana Kerwin2,21  Erik D. Roberson2,22  Emily McKinley2,22  Ian Mackenzie2,23  Pheth Sengdy2,23  Robin Hsiung2,23  Jessica Ferrall2,24  Daniel Kaufer2,24  Murray Grossman2,25  Les Shaw2,25  Katya Rascovsky2,25  Sophia Dominguez2,25  Jessica Bove2,25  David Irwin2,25  John Trojanowski2,25  Behnaz Ghazanfari2,26  Carmela Tartaglia2,26  Namita Multani2,26  Kimiko Domoto‐Reilly2,27  Christina Caso2,27  Lynne Jones2,28  Nupur Ghoshal2,28 
[1] Association for Frontotemporal DegenerationRadnorPAUSA;Bluefield Project to Cure FTDSan FranciscoCAUSA;Case Western Reserve UniversityClevelandOHUSA;Columbia UniversityNew YorkNYUSA;Department of PsychiatryDavid Geffen School of Medicine, UCLALos AngelesCAUSA;Florida Atlantic UniversityBoca RatonFLUSA;Harvard University/MGHBostonMAUSA;Johns Hopkins UniversityBaltimoreMDUSA;Laboratory of Neuroimaging (LONI), USCLos AngelesCAUSA;Mayo Clinic RochesterRochesterMNUSA;Mayo ClinicJacksonvilleFLUSA;National Alzheimer Coordinating Center (NACC), University of WashingtonSeattleWAUSA;National Cell Repository for Alzheimer's Disease (NCRAD)Indiana UniversityIndianapolisINUSA;National Institute of Neurological Disorders and Stroke (NINDS)BethesdaMDUSA;National Institute on Aging (NIA)BethesdaMDUSA;Northwestern UniversityChicagoILUSA;Oregon Health and Science UniversityPortlandORUSA;Tau ConsortiumRainwater Charitable FoundationFort WorthTXUSA;UCSDSan DiegoCAUSA;UCSFSan FranciscoCAUSA;UTSWDallasTXUSA;University of Alabama at BirminghamBirminghamALUSA;University of British ColumbiaVancouverBritish ColumbiaCanada;University of North CarolinaChapel HillNCUSA;University of PennsylvaniaPhiladelphiaPAUSA;University of TorontoTorontoOntarioCanada;University of WashingtonSeattleWAUSA;Washington UniversitySt. LouisMOUSA;
关键词: Generalized additive models;    Heterogenous variance modeling;    Neuropsychological testing scores;    Nonlinear Z‐score correction;    Shape constrained additive models;   
DOI  :  10.1016/j.dadm.2019.08.003
来源: DOAJ
【 摘 要 】

Abstract Introduction Conventional Z‐scores are generated by subtracting the mean and dividing by the standard deviation. More recent methods linearly correct for age, sex, and education, so that these “adjusted” Z‐scores better represent whether an individual's cognitive performance is abnormal. Extreme negative Z‐scores for individuals relative to this normative distribution are considered indicative of cognitive deficiency. Methods In this article, we consider nonlinear shape constrained additive models accounting for age, sex, and education (correcting for nonlinearity). Additional shape constrained additive models account for varying standard deviation of the cognitive scores with age (correcting for heterogeneity of variance). Results Corrected Z‐scores based on nonlinear shape constrained additive models provide improved adjustment for age, sex, and education, as indicated by higher adjusted‐R2. Discussion Nonlinearly corrected Z‐scores with respect to age, sex, and education with age‐varying residual standard deviation allow for improved detection of non‐normative extreme cognitive scores.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次