期刊论文详细信息
Cells
Inhibition of Vasculogenic Mimicry and Angiogenesis by an Anti-EGFR IgG1-Human Endostatin-P125A Fusion Protein Reduces Triple Negative Breast Cancer Metastases
Sundaram Ramakrishnan1  Christian Elledge2  Ankita P. Sankar2  Yu Zhang3  Seung-Uon Shin3  Hyun-Mi Cho3  Joseph D. Rosenblatt3  Ahmed Al Bayati3  Marzenna Blonska3  Augustin Pimentel4  Stephen F. Carroll5  Rathin Das5  Hava Gil-Henn6 
[1] Department of Surgery, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;Synergys Biotherapeutics Inc., Alamo, CA 94507, USA;The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
关键词: EGFR;    endostatin;    vasculogenic mimicry;    triple negative breast cancer;   
DOI  :  10.3390/cells10112904
来源: DOAJ
【 摘 要 】

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. Metastasis is the major cause of TNBC mortality. Angiogenesis facilitates TNBC metastases. Many TNBCs also form vascular channels lined by tumor cells rather than endothelial cells, known as ‘vasculogenic mimicry’ (VM). VM has been linked to metastatic TNBC behavior and resistance to anti-angiogenic agents. Epidermal growth factor receptor (EGFR) is frequently expressed on TNBC, but anti-EGFR antibodies have limited efficacy. We synthesized an anti-EGFR antibody–endostatin fusion protein, αEGFR IgG1-huEndo-P125A (αEGFR-E-P125A), designed to deliver a mutant endostatin, huEndo-P125A (E-P125A), to EGFR expressing tumors, and tested its effects on angiogenesis, TNBC VM, and motility in vitro, and on the growth and metastasis of two independent human TNBC xenograft models in vivo. αEGFR-E-P125A completely inhibited the ability of human umbilical vein endothelial cells to form capillary-like structures (CLS) and of TNBC cells to engage in VM and form tubes in vitro. αEGFR-E-P125A treatment reduced endothelial and TNBC motility in vitro more effectively than E-P125A or cetuximab, delivered alone or in combination. Treatment of TNBC with αEGFR-E-P125A was associated with a reduction in cytoplasmic and nuclear β-catenin and reduced phosphorylation of vimentin. αEGFR-E-P125A treatment of TNBC xenografts in vivo inhibited angiogenesis and VM, reduced primary tumor growth and lung metastasis of orthotopically implanted MDA-MB-468 TNBC cells, and markedly decreased lung metastases following intravenous injection of MDA-MB-231-4175 lung-tropic TNBC cells. Combined inhibition of angiogenesis, VM, and TNBC motility mediated by αEGFR-E-P125A is a promising strategy for the prevention of TNBC metastases.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次