期刊论文详细信息
Nanophotonics
Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells
Liu Longhai1  Xie Jianhua1  Wang Guangming2  Yao Jianquan3  Zhang Chiben4  Zhu Weiren4  Zhang Jin4  Xue Tingjia5  Ye Xiaodan5 
[1] Advantest (China) Co., Ltd, Shanghai201203, China;Air and Missile Defense College, Air Force Engineering University, Xi’an, China;College of Precision Instruments and Opto-Electronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin300072, China;Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai200240, China;Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai200030, China;
关键词: biosenser;    lung cancer;    metasurface;    terahertz;   
DOI  :  10.1515/nanoph-2021-0520
来源: DOAJ
【 摘 要 】

Lung cancer is the most frequently life-threatening disease and the prominent cause of cancer-related mortality among human beings worldwide, where poor early diagnosis and expensive detection costs are considered as significant reasons. Here, we try to tackle this issue by proposing a novel label-free and low-cost strategy for rapid detection and distinction of lung cancer cells relying on plasmonic toroidal metasurfaces at terahertz frequencies. Three disjoint regions are displayed in identifiable intensity-frequency diagram, which could directly help doctors determine the type of lung cancer cells for clinical treatment. The metasurface is generated by two mirrored gold split ring resonators with subwavelength sizes. When placing analytes on the metasurface, apparent shifts of both the resonance frequency and the resonance depth can be observed in the terahertz transmission spectra. The theoretical sensitivity of the biosensor over the reflective index reaches as high as 485.3 GHz/RIU. Moreover, the proposed metasurface shows high angular stability for oblique incident angle from 0 to 30°, where the maximum resonance frequency shift is less than 0.66% and the maximum transmittance variation keeps below 1.33%. To experimentally verify the sensing strategy, three types of non-small cell lung cancer cells (Calu-1, A427, and 95D) are cultured with different concentrations and their terahertz transmission spectra are measured with the proposed metasurface biosensor. The two-dimensional fingerprint diagram considering both the frequency and transmittance variations of the toroidal resonance dip is obtained, where the curves for different cells are completely separated with each other. This implies that we can directly distinguish the type of the analyte cells and its concentration by only single spectral measurement. We envisage that the proposed strategy has potential for clinical diagnosis and significantly expands the capabilities of plasmonic metamaterials in biological detection.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次