Journal of Integrative Bioinformatics | |
Metalearning approach for leukemia informative genes prioritization | |
Deusdado Sérgio1  Rodrigues Vânia2  | |
[1] CIMO – Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5301-855, Bragança, Portugal;USAL – Universidad de Salamanca, 37008, Salamanca, Spain; | |
关键词: informative genes; leukemia; machine learning; metalearning; microarray; | |
DOI : 10.1515/jib-2019-0069 | |
来源: DOAJ |
【 摘 要 】
The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.
【 授权许可】
Unknown