期刊论文详细信息
Journal of Advanced Joining Processes
Review on mechanical joining by plastic deformation
A. Brosius1  J. Troschitz2  J. Popp2  M. Merklein2  R. Kupfer2  M. Wolf2  L. Fratini3  D. Römisch3  D. Köhler3  C. Wischer4  C.-M. Kuball4  W. Homberg4  B. Gröger4  D. Han4  F. Kappe5  M. Gude5  D. Drummer5  S. Wituschek6  M. Bobbert6  U. Füssel7  P.A.F. Martins8  M. Lechner9  T. Kleffel9  G. Meschut9  J. Kalich9 
[1] Corresponding author.;Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Manufacturing Technology, Germany;Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Polymer Technology, Germany;TU Dresden, Institute of Lightweight Engineering and Polymer Technology, Germany;Technische Universität Dresden, Institute of Manufacturing Science and Engineering, Germany;Universidade de Lisboa, Instituto Superior Técnico, IDMEC, Portugal;University of Palermo, Department of Engineering, Italy;Universität Paderborn Chair of Forming and Machining Technology, Germany;Universität Paderborn, Laboratory for material and joining technology, Germany;
关键词: Mechanical joining;    Joining processes;    Pin-joining;    Clinching;    Self-piercing riveting;    Versatility;   
DOI  :  
来源: DOAJ
【 摘 要 】

Mechanical joining technologies are increasingly used in multi-material lightweight constructions and offer opportunities to create versatile joining processes due to their low heat input, robustness to metallurgical incompatibilities and various process variants. They can be categorised into technologies which require an auxiliary joining element, or do not require an auxiliary joining element. A typical example for a mechanical joining process with auxiliary joining element is self-piercing riveting. A wide range of processes exist which are not requiring an auxiliary joining element. This allows both point-shaped (e.g., by clinching) and line-shaped (e.g., friction stir welding) joints to be produced. In order to achieve versatile processes, challenges exist in particular in the creation of intervention possibilities in the process and the understanding and handling of materials that are difficult to join, such as fiber reinforced plastics (FRP) or high-strength metals. In addition, predictive capability is required, which in particular requires accurate process simulation. Finally, the processes must be measured non-destructively in order to generate control variables in the process or to investigate the cause-effect relationship. This paper covers the state of the art in scientific research concerning mechanical joining and discusses future challenges on the way to versatile mechanical joining processes.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:7次